skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hossain, Md Sakhawat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper reports the study of hollow microballoon-filled epoxy composites also known as syntactic foams with various volume fractions of microballoons. Different mechanical and thermomechanical investigations were carried out to study the elastic and viscoelastic behavior of these foams. The density, void content, and microstructure of these materials were also studied for better characterization. In addition to the experimental testing, a representative 3D model of these syntactic foams was developed to further investigate their elastic behavior. The results indicate that changes in the volume percentage of the microballoons had a substantial impact on the elastic and viscoelastic behavior of these foams. These results will help in designing and optimizing custom-tailored syntactic foams for different engineering applications. 
    more » « less
  2. The isotropic to ferroelectric nematic liquid transition was theoretically studied over one hundred years ago, but its experimental studies are rare. Here we present experimental results and theoretical considerations of novel electromechanical effects of ferroelectric nematic liquid crystal droplets coexisting with the isotropic melt. We find that the droplets have flat pancake-like shapes that are thinner than the sample thickness as long as there is room to increase the lateral droplet size. In the center of the droplets a wing-shaped defect with low birefringence is present that moves perpendicular to a weak in-plane electric field, and then extends and splits in two at higher fields. Parallel to the defect motion and extension, the entire droplet drifts along the electric field with a speed that is independent of the size of the droplet and is proportional to the amplitude of the electric field. After the field is increased above 1 mV μm −1 the entire droplet gets deformed and oscillates with the field. These observations led us to determine the polarization field and revealed the presence of a pair of positive and negative bound electric charges due to divergences of polarization around the defect volume. 
    more » « less